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SUMMARY

Fasciolosis, a food-borne trematodiasis, results following
infection with the parasites, Fasciola hepatica and Fasciola
gigantica. These trematodes greatly affect the global agri-
cultural community, infecting millions of ruminants world-
wide and causing annual economic losses in excess of US $3
billion. Fasciolosis, an important zoonosis, is classified by
WHO as a neglected tropical disease with an estimated 17
million people infected and a further 180 million people at
risk of infection. The significant impact on agriculture and
human health together with the increasing demand for ani-
mal-derived food products to support global population
growth demonstrate that fasciolosis is a major One Health
problem. This review details the problematic issues surround-
ing fasciolosis control, including drug resistance, lack of
diagnosis and the threat that hybridization of the Fasciola
species poses to future animal and human health. We discuss
how these parasites may mediate their long-term survival
through regulation and modulation of the host immune sys-
tem, by altering the host immune homeostasis and/or by
influencing the intestinal microbiome particularly in respect
to concurrent infections with other pathogens. Large gen-
ome, transcriptome and proteomic data sets are now avail-
able to support an integrated One Health approach to
develop novel diagnostic and control strategies for both ani-
mal and human disease.
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INTRODUCTION

Among the major neglected tropical diseases (NTD) of
humans are a group that result from infection with the
trematode parasites Schistosoma mansoni, S. japonicum,
S. haematobium, S. mekongi and S. bovis (the blood
flukes), Paragonimus westermani (the lung fluke) and Clo-
norchis sinensis, Opisthorchis viverrini, Fasciola hepatica
and F. gigantica (the liver flukes). Collectively these dis-
eases afflict >1 billion people and cause >600 million dis-
ability adjusted life years (DALYs) (1–3). Human
infections are predominantly found in Africa, South
America, North and South Asia, China and Korea (1).
Infections with the liver and lung flukes occur by inges-

tion, and hence, these are often classified separately as
food-borne trematodiases (see 1–4). In this review, we
examine the liver flukes Fasciola hepatica and F. gigantica
that are the most important trematodes afflicting the glo-
bal agricultural community. However, in the last 25 years
alone fasciolosis has emerged as an important zoonosis
and NTD with an estimated 17 million people infected
and about 180 million people living in endemic areas at
risk to infection (5–7).
Fasciola hepatica, usually termed the temperate fluke, is

found worldwide, on every inhabited continent, while,
Fasciola gigantica, the tropical fluke is found in tropical
areas of Asia and Africa. The life cycle is essentially the
same for both Fasciola species and differs only in the
intermediate host snail species (8). Eggs are passed in the
faeces of infected mammalian hosts and deposited into
the environment, typically pastures and grazing areas near
a body of water. Following a period of maturation and
activation by temperature and light, the eggs hatch releas-
ing miracidia, which actively seek out the snail intermedi-
ate host. The species of snail that act as intermediate
host (Galba truncatula infected by F. hepatica and the
African Radix natalensis and the Eurasian Radix auricu-
laria infected by F. gigantica) differ for each parasite
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species and exhibit marked differences in their geographi-
cal distribution (9, 10). Within the snail, the parasite
undergoes a clonal expansion through radiae and cercerial
stages. The cercariae are released from the snails and
encyst on vegetation as metacercariae that can remain
viable for months. Domestic animals pick the disease up
by eating contaminated grass, while human infections
occur following the ingestion of infected edible aquatic
salad vegetation, typically found near the infected ani-
mals, such as watercress (11, 12) or through the consump-
tion of metacercariae-contaminated water (10). Upon
ingestion of infected vegetation, the parasites emerge from
their cysts in the intestine, as newly excysted juveniles
(NEJ) that then traverse the intestinal wall into the peri-
toneal cavity before migrating to the liver capsule and
parenchyma. Following a period of approximately 7-
8 weeks, the parasites migrate into the bile ducts where
they develop into sexually mature adults, releasing
20 000–24 000 eggs per fluke per day (13).

DIAGNOSIS OF HUMAN LIVER FLUKE
INFECTION

The exact prevalence of human fasciolosis is most likely
underestimated due to the lack of epidemiological surveys
performed in potentially endemic areas. Approximately
50% of human infections are asymptomatic and are there-
fore not reported (14). Diagnosis of the remaining infec-
tions can vary depending on the detection method used.
Faecal egg counts (FEC) are routinely used for diagnosis
of animal infections, with the FLOTAC system described
by Cringoli and colleagues exhibiting particularly high
levels of sensitivity and accuracy (15). For human infec-
tions, these methods can be inaccurate as they rely on a
chronic infection comprising of mature adult flukes in the
bile ducts. Parasite burden and the sporadic nature of egg
deposition leading to miss timing of faecal sampling are
also weaknesses of this technique for human diagnosis.
ELISA-based methods can be used as alternatives for
FEC, with several available that determine anti-Fasciola
antibodies to proteins found within the parasite secretome.
Numerous ELISAs have been reported based on the most
abundantly secreted groups of proteases, the cathepsin L
cysteine proteases. Gonzales-Santana and colleagues (16)
have developed a recombinant cathepsin L-based ELISA
test specific for human F. hepatica infections that showed
99�9% sensitivity and 99�9% specificity. The cathepsin L
proteases are also the focus of the capture ELISA devel-
oped by Mezo et al. (17; MM3-SERO), which is based on
a monoclonal antibody MM3 that binds to both cathepsin
L1 and L2 proteases (18). An ELISA method focussing
on saposin-like protein-2 has also been developed,

although the levels of sensitivity and specificity of 87%
and 99%, respectively (19), are lower than that reported
by Gonzales-Santana et al. (16). Similar ELISA tests are
available for F. gigantica using a variety of different anti-
gens: (a) Fas1 and Fas2 cysteine proteases, resulting in
91�9% and 89�1%, sensitivity and specificity, respectively
(20); (b) sandwich ELISA using fatty acid binding protein,
resulting in 94�7% sensitivity and 84�62% specificities (21);
(c) 27 kDa circulating antigen from sera of infected indi-
viduals gave >93% sensitivity and specificity (22). A lateral
flow test (SeroFluke) was developed by Martinez-Sernan-
dez and colleagues using samples obtained from F. hepat-
ica-infected patients in Spain and Portugal, for use with
serum or whole blood samples, which requires minimal
training (23). However, ELISAs capable of distinguishing
active infection by F. hepatica and F. gigantica are needed
for diagnosis in areas of geographical overlap of the two
species, particularly if access to the adult flukes for geno-
typing is not available.

HYBRID AND/OR INTROGRESSED
POPULATIONS OF LIVER FLUKE

Fasciola has the ability to self-fertilize, cross-fertilize and
in some cases undergo parthenogenesis. These flukes are
typically diploid as shown by a recent study in the UK
(24), although triploid and mixoploid isolates have been
observed in one animal infection in cattle in the UK
(F. hepatica, Cullumpton strain, triploid; 25), and in Asian
flukes of China, Japan, Vietnam and Korea (26–31). The
triploid and mixoploid parasites are often aspermic, rely-
ing on parthenogenesis for continuation of the life cycle.
In areas of Japan, Vietnam and Korea, parasites cannot

be classified as F. hepatica or F. gigantica using morpho-
metrics due to the variety of intermediate forms that exist.
Moreover, molecular analysis of mitochondrial genes and
intergenic genome sequences (ITS2) has found that these
intermediate forms are hybrid species. This analysis identi-
fied individuals with nuclear DNA of one species, but the
mitochondrial genome of the other species as well as indi-
viduals with copies of genes derived from both species
(28–31). The ability of these species to hybridize and/or
introgress will play a role in genetic diversity within popu-
lations (32) and has the potential for crossover of anthel-
minthic resistance between the two species. Furthermore,
hybridization may also have serious implications for peo-
ple living in areas where the two species co-localize as this
could result in the emergence of more pathogenic Fasciola
isolates. A recent study by Valero and colleagues (33)
showed that when directly compared in infections of
Guirra sheep, which have similar susceptibilities to both
species, F. gigantica was found to be more pathogenic than
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F. hepatica. Also, a recent analysis of human infections in
Vietnam has revealed that hybrids are also able to infect
people (34).
To date, Fasciola hybrids have been identified using

mitochondrial genes, which act as robust markers due to
their maternal inheritance. As mitochondrial genes are
unlinked to the nuclear genome, introgression of these
markers has often been shown to be greater than nuclear
encoded markers (35). That said, these markers alone may
not accurately reflect whether true hybridization/introgres-
sion occurs within Fasciola, due to different mutation rates
across the genome. The availability of the F. hepatica gen-
ome has driven the development of larger panels of mark-
ers including SNPs (36) and microsatellites (37), which
have shown that the F. hepatica genome is highly heteroge-
nous. In depth analysis of these hybrids can now be car-
ried out across the genome to elucidate whether
hybridization and/or introgression is occurring between
Asian F. hepatica and F. gigantica and at what level. Most
importantly, there is a need to investigate the impact
hybridization and/or introgression could have on human
infections, especially as more cases of human F. gigantica
infections are being reported, to determine whether the
hybrid flukes are more or less pathogenic than their
parents.

EMERGENCE OF DRUG RESISTANT
PARASITES: A THREAT TO ANIMALS AND
HUMANS

Control of Fasciola in ruminants is reliant on the use of
anthelmintic drugs, particularly triclabendazole (TCBZ),
which targets both the tissue damaging immature stages
and mature adult stages of the parasites. TCBZ treat-
ment failure and/or resistance are increasingly reported
for F. hepatica infections in ruminants across Europe,
South America and Australia (38, 39) but fortunately, to
date, no cases of F. gigantica TCBZ resistance have been
reported. Treatment of human fasciolosis also relies on
the use of TCBZ, which was commercially available as
Egaten (Novartis Pharma AG), through a joint venture
with WHO. However, it is still not licensed for use in
several countries (40), such as USA and Canada, where
TCBZ is only available to US licensed physicians under
approval from the Centres for Disease Control and
Prevention (CDC) and the Food and Drug Adminstra-
tion (FDA) on a case-by-case basis (41). Other drugs
have also been used to treat human F. hepatica infec-
tions, including nitazoxanide, originally FDA approved
for protozoal infections which was shown to have vary-
ing efficacy levels depending on the study, ranging
between 40% and 100% (42). As with the ruminant

infections, TCBZ failure has been found in humans, with
the first case being reported in 2012 in the Netherlands
of a sheep farmer who became infected with F. hepatica
as a result of casual chewing of contaminated grass (43).
Following the failed treatment with TCBZ in this case,
nitazoxanide was used but with no effect, indicating that
nitazoxanide was not effective against these potentially
TCBZ-resistant parasites. Gulhan and colleagues (44)
have also reported a case of a child in Turkey that was
infected with F. hepatica and, did not respond to TCBZ
treatment, although this report did not speculate as to
the mode of infection with a potentially TCBZ-resistant
isolate. Similarly, Cabada and colleagues (45) have
reported a group of patients, infected by ingesting water-
cress in the Cusco region of Peru that failed to respond
to multiple courses of triclabendazole. As with the
Winkelhagen et al. (43) case report, following TCBZ
treatment failure, the patients were prescribed nitazox-
anide, which only appeared to cure one patient, further
emphasizing that nitazoxanide is not effective against
TCBZ-resistant parasites. As TCBZ resistance becomes
more prevalent in F. hepatica endemic regions, it is very
possible that more human cases of infection with TCBZ-
resistant F. hepatica parasites will be reported which
poses a real problem for human treatment.

IMMUNE RESPONSES AND IMMUNITY TO
LIVER FLUKE

The immune response induced during natural infection
has been well characterized in ruminants for F. hepatica
although there are increasing studies on F. gigantica that
report similar findings (46–50). During the acute stages
of infection, cattle exhibit a mixed immune response with
elevated IL-10, TGF-b, IL-4 and IFN-c. However, as
infection progresses Th2/Treg immune responses become
more dominant (51). During the later chronic stages,
Treg cells release cytokines that inhibit inflammatory
Th1/Th2 cytokines; PBMCs isolated from F. hepatica -
infected cattle produced enhanced levels of IL-4 and
IFN-c cytokines when cultured in vitro in the presence
of TGF-b and IL-10 neutralizing antibodies (51). This
immune profile is similar in sheep infected with F. hepat-
ica as they also present a mixed Th1/Th2 cytokine pro-
file in the spleen at week 3 after infection and as
infection progresses enhanced gene expression of Th2 but
not Th1 cytokines is observed (52). Interestingly,
although an overall systemic Th2 immune response dom-
inates, different cytokines are expressed at different
anatomical locations; in sheep, IL-5 can be detected in
the hepatic lymph nodes, while IL-10 is primarily
observed in the spleen (53–55), whereas in goats, IFN-c
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and high levels of IL-4 can be detected in both the hep-
atic lymph node and liver (56).
While it has been reported that Indonesian thin-tailed

sheep can resist infection to F. gigantica, no natural or
experimental hosts exhibit resistance to F. hepatica infec-
tion, and successful trickle infection in cattle demonstrates
a lack of concomitant immunity (57–59). This suggests
that the ability of F. hepatica to successfully infect a broad
spectrum of mammalian hosts across the globe (e.g. cattle,
sheep, goats, buffaloes, kangaroos, capybara, camelids and
humans, see (4, 10) can be attributed partly to the devel-
opment of effective immune-modulatory mechanisms to
prevent the normal protective response and thus ensure
the parasites longevity. The potent suppression of host
Th1 immune responses during active infection of both nat-
ural hosts and experimental rodent models has been
attributed to the development of a strong regulatory/Th2-
type immune response (51, 54, 56, 60–66).
While Th2 and regulatory T-cell cytokines are impor-

tant in downplaying host protective Th1 responses during
infection with F. hepatica, it seems that the parasite also
influences various cells of the innate immune response.
Firstly, in experimental mouse models, CD11c+ dendritic
cell (DC) populations are increased during Fasciola infec-
tion displaying an immature phenotype with lower expres-
sion of co-stimulatory markers (CD40, CD80 and CD86),
MHC class II, increased expression of CCR5 and are
hyporesponsive to TLR activation (67). These cells express
enhanced levels of intracellular IL-10 and ex vivo suppress
the secretion of antigen specific IL-17 and IFN-c from
na€ıve DO11.10 OVA TCR Tg CD4+ T cells independent of
IL-10 and TGF-b (68). Secondly, the induction of macro-
phages with a regulatory/M2 phenotype is common in
both large animals and rodents infections (69–72). This
switch occurs within the first 3 days of murine infection
and similar to DCs activated by Fasciola antigens, M2
macrophages are hyporesponsive to TLR ligands, suggest-
ing a reduced ability to promote the differentiation of host
Th1 immunity. In addition, it has been shown that M2
macrophages isolated from mice during infection with
F. hepatica promote the polarization of Th2 cells (69, 70).
Thirdly, there is a significant increase in the number of
mast cells observed at the site of infection and in the gut
mucosa (73–77). While mast cells are critical to the expul-
sion of gut helminths (78), their role in Fasciola infection
is not clear, although we hypothesize that given that mast
cells have an important role in wound healing and tissue
remodelling (79), they are recruited to combat the exten-
sive tissue damage caused by migratory flukes (80).
It also appears that during infection of mice with

F. hepatica, T cells are induced to enter an anergic state as
markers of anergy (GRAIL, EGR2, ICOS and ITCH)

were observed in CD4+ T-cell populations (81) and may
explain why these cells become hyporesponsive to antigen
stimulation in the late stages of infection (82). This anergic
state, as shown by decreased cytokine responses and
reduced proliferative activity, could be reversed with the
addition of IL-2 to cultures (81). The presence of anergic
T cells is yet to be demonstrated in ruminants (and
humans); however, the lack of IL-2 reported in the local
HLN of infected sheep supports such a mechanism of
immune inactivation (54, 55).

ALTERED IMMUNE HOMEOSTASIS DURING
FASCIOLA INFECTION

The induction of wound-healing immune mechanisms
(Th2, M2 macrophages, mast cells) by F. hepatica is
clearly important to protect vital tissues, particularly the
liver, from damage caused by the migratory activity of the
parasite (83–86), while the regulation/suppression of pro-
tective pro-inflammatory type 1 immune responses is cen-
tral to the promotion of the host’s tolerance to the
parasite, supporting its long-term survival (87, 88). How-
ever, helminth parasites are rarely the sole infecting organ-
ism within a mammalian host, particularly in endemic
regions where co-infections are common (89). Therefore,
immune suppressive effects of F. hepatica are not confined
to the host-parasite relationship but likely have broader
implications to the induction of type 1 immune responses
necessary to mediate resistance (induced by infection or
vaccination) to major coexisting pathogens. For example,
cattle infected with F. hepatica were more susceptible to
infections with Salmonella dublin and took longer to clear
the bacteria than nonhelminth-infected animals (90). Simi-
larly, concurrent infection of mice with F. hepatica and
Bordetella pertussis resulted in a prolonged bacterial lung
infection (60).
Importantly, epidemiological surveys indicate that

hyperendemic regions (>10%) for infection with Fasciola
overlap with the geographical distribution of human
microbial pathogens implying a significant impact on
human health. For example, aside from fasciolosis, the
most common childhood illnesses among the Aymara peo-
ple of the Northern Altiplano of Bolivia are upper respira-
tory infections such as whooping cough and tuberculosis
(91). These children are also infected with a range of other
protozoal and helminth parasitic infections, with a signifi-
cant positive association for F. hepatica and Giardia
intestinalis co-infections (92). Fasciola is also emerging as
a human pathogen in communities of Iran’s Guilan Pro-
vince (93, 94) that are already afflicted by malaria and
tuberculosis (95, 96). Although there are currently no
studies on the immune status of humans co-infected with
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Fasciola and other pathogens, clinical studies with other
helminths (97–101) suggest that modulation of host
responses by helminth infection increases susceptibility to
microbial pathogens and impairs vaccine efficacy. More
extensive longitudinal human studies are required to fully
determine the effect of Fasciola infection on the pathogen-
esis of microbial pathogens within endemic populations.
Beyond this specific impact on immune response to con-

current infections, there is a growing body of evidence sug-
gesting that the constant presence of helminth parasites
(particularly intestinal soil transmitted species) within the
human population since prehistoric times has strongly
shaped the evolution of the human immune system (102).
Indeed, the need to overcome the regulatory mechanisms
exerted by helminths appears to have resulted in compen-
satory adjustments to immune-related genes (103, 104).
Accordingly, in populations where parasitic infections are
no longer endemic, there is an increased prevalence of
inappropriate immune responsiveness to auto-antigens and
allergens and the concomitant development of autoim-
mune/inflammatory diseases (105, 106). The epidemiologi-
cal pattern of fasciolosis is more varied than that seen for
intestinal helminth infection. While low and stable levels
of Fasciola exist within small, defined populations, spo-
radic outbreaks are associated with climatic changes that
boost the life cycle of the parasite and/or intermediate
snail host (107–109). Therefore, it is presently unclear
whether infection with either F. hepatica or F. gigantica
provides any such immune benefit to its host.
The possibility that helminth infection influences

immune homeostasis by mediating changes to intestinal
microbiota has not been extensively explored, even though
it is now clear that this commensal community profoundly
impacts the homeostasis of innate and adaptive immune
responses and thus the development of immune-mediated
disease (110–116). Changes in gut microbiota, attributed
to the use of antibiotics, particularly in childhood, have
been correlated with incidences of multiple sclerosis,
rheumatoid arthritis, inflammatory bowel disease and
allergy (116, 117). Furthermore, experimental studies show
that changes to the intestinal microbiota of mice strongly
influence the development of allergy, inflammatory bowel
disease, rheumatoid arthritis, experimental autoimmune
encephalitis and type 1 diabetes (118–123). Controlled
infections of animals have shown that the presence of
intestinal parasites results in changes to the composition
and abundance of intestinal microbiota species (124–127).
However, the use of anthelminthics suggests that the con-
tinuing presence of the parasite may be required for sus-
tained changes to the bacterial community (128).
A primary mechanism by which the intestinal micro-

biota regulate immune responses is proposed to be

through the production of immune modulating metabolites
such as short-chain fatty acids (SCFA; 129, 130). The
most abundant of these are butyrate, propionate and acet-
ate produced by the bacterial fermentation of plant-
derived nondigestable polysaccharides, like cellulose, in the
gut (131, 132). Treatment of both murine macrophages
and dendritic cells with bacterial SCFAs is associated with
a decrease in the production of pro-inflammatory cytoki-
nes such as IL-12 and TNF and increased expression of
IL-10 (129, 133, 134). Similarly, human peripheral blood
mononuclear cells exposed to SCFAs display a reduced
ability to produce TNF and IFN-c in response to treat-
ment with lipopolysaccharide (135). Furthermore, SCFAs
appear to regulate production of pro-inflammatory cytoki-
nes in nonimmune cells such as Caco-2 cells (136). In
addition, these SCFAs also contribute to the induction of
regulatory T cells, either directly through interaction with
the G-protein-coupled receptor GPR43 (137) or indirectly
via activation of regulatory macrophages, which in turn
generate a population of FoxP3+ T cells (121). It is inter-
esting that parasite-associated microbiota produce an
increased amount of SCFAs, which have been shown to
mediate an increase in the proportion of lung regulatory T
cells and as a result attenuate allergic airway inflammation
(138). Although some studies in humans confirm that
there is a difference in the gut microbiome community
and the production of SCFA in helminth-infected individ-
uals (139–141), the data are not consistent across popula-
tions, likely due to sample size, differences in diet and
other yet unknown confounding factors.
F. hepatica spends a short time in the gut during infec-

tion and is typically localized to the duodenum (8), which
suggests that this parasite may not significantly influence
the composition of the gut microbiota. Instead, Fasciola
parasites take a number of weeks migrating through the
liver of its mammalian host before ultimately residing in
the bile duct for many years from where they can mediate
systemic immune modulation; the adult parasite is an obli-
gate blood feeder, an activity likely to result in the contin-
ued release of parasite excreted/secreted (ES) products into
the host circulation. Like SCFAs, these parasite ES prod-
ucts actively suppress the production of pro-inflammatory
cytokines by most cells of the innate immune system,
resulting in the systemic switch towards a regulatory/Th2
immune environment (67, 69, 70, 142).
Additionally, the presence of the parasite appears to

influence the composition of bile acids (143). Bile acids
act as signalling molecules through either TGR5 or FXR
to regulate intestinal homeostasis via the inhibition of
inflammation, prevention of pathogen invasion and main-
tenance of tissue integrity (144, 145). Activation of TGR5
inhibits NFjB and thus reduces the production of pro-
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inflammatory cytokines such as IL-6 and TNF by macro-
phages and Kupffer cells (144–146). While signalling via
FXR also represses NFjB-dependent transcription result-
ing in an anti-inflammatory response (129, 130, 144, 145,
147), activation of this receptor also increases the expres-
sion of several genes associated with antibacterial actions
such as IL-18 (148). Notably, infection with F. hepatica
results in significant increases in the production of bile
acids (149) and IL-18 was recently identified as the most
significantly up-regulated interleukin in the liver of
infected sheep (52). Such preliminary observations encour-
age further characterization of the composition of bile
acid during acute and chronic infection with F. hepatica in
animals and humans and an assessment of the ability of
these to regulate the functions of innate and adaptive
immune cells as well as influence the microbiome of the
gut into which they are passed.

ADVANCES IN -OMIC TECHNOLOGY WILL
HELP FILL THE GAPS IN OUR KNOWLEDGE

In the past decade, there has been major advancement
in the available ‘-omics’ data for trematode parasites
(150–153), which has allowed robust comparative genome
analyses between these species. Data sets are now avail-
able for both F. hepatica and F. gigantica which has
greatly expanded our knowledge of these parasites, par-
ticularly regarding life cycle stages that have been histor-
ically difficult to study at the molecular level due to
sample sizes. These recent technological developments
have allowed more in depth analysis of these two Fasci-
ola species to further our understanding of fluke biology
and how they infect and persist within their hosts. Sev-
eral secretome data sets are available for both species
(154–158), which for F. hepatica are being complimented
by analysis of the exosome component of the secreted
proteins (159, 160) as well as glycan analysis of these
proteins (161; Ravida et al., unpublished), allowing in
depth analysis of those proteins directly interacting with
the host. A complete set of transcriptomes from the life
cycle stages present within the definitive host, ranging
from metacercariae to mature adult flukes are now avail-
able, allowing analysis of the extensive differential
expression that occurs within this host, particularly as
the parasite migrates through the liver (36). These tran-
scriptomes have been mapped onto the recently pub-
lished F. hepatica draft genome (36). Together this
analysis has revealed that F. hepatica has one of the lar-
gest known pathogen genomes, at 1�3 Gbp that currently
cannot be explained simply by whole genome duplication
or expansion of repeated regions. The genome also
shows high levels of polymorphism, allowing for the

potential of dramatic genetic adaptation to new environ-
ments and molecules. Analysis of the draft genome has
clarified several gene families of interest for vaccine and
drug target development, such as the cathepsin cysteine
proteases (L & B families), the asparaginyl endopepti-
dases (legumains) and the ABC transporters, which have
greatly expanded and diversified biochemically and func-
tionally.
Analysis of the differential expression across the

F. hepatica life cycle has shown that the parasite under-
goes rapid metabolic development, particularly during
the early stages of parasite migration through the host,
which may be notable for future drug development.
Increased levels of gene expression were induced as the
parasite enters and migrates through the liver. This is
coupled with extensive parasite growth that may possibly
be driven by neoblast-like stem cells (162, 163). This
study is further complimented by the proteomic analysis
of the secretome of these life cycle stages, which has
revealed in particular that the majority (70%) of the
secretome of the early NEJ stages is represented by 10
proteins (Cwiklinski and Dalton, unpublished). Elucidat-
ing the function of these secreted proteins and their rele-
vant abundance within the secretome is key to furthering
our understanding of how the parasite interacts and
manipulates its host.
Similarly, for F. gigantica, transcriptome data are avail-

able for the adult stage parasites, which when compared
with F. hepatica data revealed that the predicted proteins
showed between 80 and 90% homology (based on E-value
1E�15 and E-value 1E�05 cut-offs; 164). These two species
have been consistently shown to have high levels of simi-
larities at the morphological and life cycle level as well as
at the gene transcription level. Comparative analysis of
the F. gigantica genome currently being sequenced (Trema-
tode.net, 165) with the F. hepatica genome is critical for
our comprehension of these two species and their hybrids
to define differences that may govern species-specific
pathogenesis.
Similarly, more robust analysis can now be carried out

for the phylum Trematoda, to reveal how these parasites
have developed their host/tissue preferences and immune
evasion strategies and how this relates to their transmis-
sion patterns and distribution. Particularly for the liver
flukes, namely C. sinensis, O. viverrini and Fasciola spp.,
such comparative genomics could illuminate the species-
specific strategies of surviving within the same environ-
ment (bile duct). Furthermore, these studies should unra-
vel the mode of action of the Fasciola-specific
anthelmintic TCBZ and explicate why praziquantel,
which acts on most trematodes, has no effect on
Fasciola.
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CONCLUSION

Diseases caused by F. hepatica and F. gigantica in humans
have emerged as an important NTDs, mainly in poor rural
regions in Africa and Asia. We still do not know the full
extent or epidemiological distribution of diseases caused
by either of these two parasites, nor do we fully under-
stand their virulence and pathogenicity in humans. Cross-
fertilization between the species threatens the spread of
hybrids with unknown capacity to infect and cause dam-
age in animals and humans, and therefore, we urgently
require new species-specific tests for diagnosis and surveil-
lance purposes. The spread of triclabendazole-resistant
parasites is also of concern because it is the only drug that
targets the tissue damaging juvenile stage, and is the only
available effective treatment for human infections. While
immunological studies are gradually defining immune
mechanisms of infection, pathogenesis and protection,
these are predominantly confined to animal studies and
can only be assumed to apply to humans. Nevertheless,
old and recent results strongly suggest that infection with
Fasciola species does leave the host, animal and human,
susceptible to co-infection with other pathogens; this affect
may be mediated via immune modulation, immunosup-
pression, immune polarization and/or by altering the com-
position of the microbiome (gut and/or bile).
The relevance of fasciolosis as a ‘One Health’ food-

borne zoonosis will grow if we do not come up with new
control measures. Vaccines for animal liver fluke disease
should have a major impact on human infection, but

despite excellent progress, these are still some years away.
Molecules actively secreted as soluble components or in
extracellular vesicles are critical to how Fasciola interacts
and modulates the host immune response and are consid-
ered prime vaccine candidates (reviewed in 67, 160, 166,
167). Development in the ‘omics’ technologies is keeping
research on Fasciola abreast with the broader field of par-
asitology and pathogen biology, and complete data sets
(genome, transcriptome, proteome, glycome) will become
available to researchers in the near future. However, many
gaps in our knowledge (e.g. mechanisms of protective
immunity, the relevance of the microbiome in parasite
resistance and protection, vaccine performance in the field
etc.) and available tools (e.g. immunologicals such as cyto-
kine arrays, microarrays and multiplex cytokine qPCRs)
still exist and require our collective efforts to fill (Fig-
ure 1). Moreover, there is a serious dearth of information
regarding the global prevalence of human fasciolosis as
well as an understanding of immune response to infection
and the pathogenesis associated with the migration of the
parasite through the liver and its residence in the bile
duct.
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FASCIOLOSIS – ONE HEALTH
REMAINING QUESTIONS

Human fasciolosis
• Global prevalence
• Effective diagnosis
• Immune response
• Microbiome

Ruminant fasciolosis
• Suitable immunological tools
• Mechanisms of protective immunity
• Vaccine performance in the field
• Microbiome

Fasciola hepatica vs. Fasciola gigantica
• Prevalence of each species
• Does true hybridization/introgression occur?
• Virulence/pathogenesis of hybrids

Figure 1 Graphical representation of the
remaining questions associated with
Fasciolosis as a ‘One Health’ problem.
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